POLATIS ${ }^{\circledR}$ SERIES 6000n Network Optical Matrix Switch

Single-mode network optical switch from 16×16 to 192×192 ports

Series 6000n 192×192 Switch

KEY FEATURES

- Non-blocking matrix switch sizes from 16×16 to 192×192
- Available in symmetric $\mathrm{N} \times \mathrm{N}$ and $\mathrm{N} \times \mathrm{CC}$ any-to-any port configurations; asymmetric $M x N$ configurations on request
- Fully bidirectional optics
- Protocol and bit-rate agnostic up to 400 Gbs and beyond
- Switch and hold dark fiber connections
- SDN enabled with NETCONF and RESTCONF command interfaces
- Carrier-class interfaces with SNMP, TL1 and SCPI control languages
- Built-in user-friendly secure web GUI interface
- Supports RADIUS secure user access protocols
- Optional Optical Power Monitoring (OPMs) with user configurable optical power alarms
- Optional Automated Protection Switching (APS) based on loss or degradation in optical signal power
- High reliability distributed architecture
- Eco-friendly low power consumption
- Dual redundant power and network interface cards

Red
Helix

The POLATIS Series 6000 n Network Optical Switch is a high-performance, fully nonblocking all-optical matrix switch available in sizes from 16×16 up to 192×192. It is designed to meet the highest performance and reliability needs of the most demanding applications with exceptionally low optical loss, compact size, low power requirements and fast switching speeds. With support for Software-Defined Networks (SDNs) via embedded NETCONF and RESTCONF control interfaces, the Series 6000n enables extremely low latency for time-critical traffic required for new virtual cloud services in hybrid packet-optical data centers.

DirectLight® ${ }^{\circledR}$ technology

POLATIS Series 6000n switches use POLATIS patented, highly reliable piezoelectric DirectLight ${ }^{\oplus}$ beam-steering technology that sets the industry standard for lowest optical loss and highest optical performance. POLATIS DirectLight ${ }^{\oplus}$ technology allows true dark fiber switching where the connections can be made and held without light being present on the fiber. This allows operators to pre-provision paths as well as perform intelligent network monitoring. POLATIS DirectLight ${ }^{\oplus}$ can also switch bi-directional optical signals for PON, FTTx and other types of transmission systems.

SDN enabled

POLATIS switches can be easily deployed in an SDN platform using NETCONF or RESTCONF interfaces, enabling network operators to monitor and dynamically reconfigure the network in real time to quickly respond to changing network conditions. The SDN and other control interfaces allow for seamless integration with higher-level network management systems and test equipment controllers. This added level of flexibility increases equipment utilization and lowers overall costs while increasing network availability. In addition, POLATIS also offers SNMP, TLT, and SCPI command languages and a user-friendly secure web browser GUI interface that can be used to provision, monitor, and control the switch.

Switch matrix size options

The POLATIS Series 6000n is available in sizes from 16×16 up to 192×192 in symmetric ($\mathrm{N} \times \mathrm{N}$) and single-sided customer-configurable (NxCC) switch matrices, to meet a broad range of network applications. Asymmetric ($\mathrm{M} \times \mathrm{N}$) configurations are available on request. Switch sizes up to 32×32 can be accommodated in a 1 RU chassis.

Carrier-class reliablity

The POLATIS Series 6000n switch has carrier-class reliability. The switch has a distributed architecture that eliminates the possibility of any single point of failure disabling it and includes dual, hot-swap power supplies and network interface cards.

Optional power monitors and optical taps

POLATIS Series 6000n switches include options for integrated optical power monitoring (OPMs) on every connection. These are ideal for identifying signal degradation or loss, as well as for testing applications. POLATIS switches can also be easily configured to provide fully automated multilevel protection switching using a combination of power monitoring, threshold alarm indicators and fast switching.

BENEFITS OF POLATIS SWITCHING

- Low optical loss reduces the need for extra optical amplification and enables novel architectures
- Superior optical specifications enable operation at 400 Gbs and beyond
- NETCONF and RESTCONF interfaces enable faster deployment of new control applications
- Bi-directional, all-band transmission with minimal signal impairment provides truly transparent connections
- Fast switching times enable efficient provisioning and protection switching
- Dark-fiber switching enables preprovisioning and use with intermittent signals
- Low power usage and compact physical size fits into applications other switches cannot

APPLICATIONS

- Fast automatic provisioning and protection switching in optical networks with Software-Defined Networking
- Cage-to-cage provisioning in data centers
- Data center interconnects
- Network traffic and performance monitoring
- Cybersecurity monitoring
- Infrastructure as a Service (laaS) automation and orchestration
- Video content creation and broadcasting
- High performance computing
- Disaggregation

Red

 Helix
HUBER+SUHNER

Supplied \& supported in the UK by Red Helix
Tel:01296 397711
Email:info@redhelix.co.uk
Web: www.redhelix.co.uk

Performance Parameters	POLATIS 6000n Specifications
Matrix Switch Sizes $(\mathrm{N} \times \mathrm{N})^{1}$	16×16 to 192×192
Typical Insertion Loss ${ }^{2}$	1.0 dB
Maximum Insertion Loss ${ }^{2}$	2.0 dB
Maximum Insertion Loss with single OPM ${ }^{2}$	2.5 dB
Loss Repeatability 3	$+/-0.1 \mathrm{~dB}$
Connection Stability ${ }^{3}$	$+/-0.1 \mathrm{~dB}$
Operating Wavelength Range	$260-1675 \mathrm{~nm}$
	$1260-1650 \mathrm{~nm}$ with optional OPMs
Return Loss (with APC connectors)	$>50 \mathrm{~dB}$
Max Switching Time	25 ms
Data Latency through a switch connection	25 ns
Dark Fiber Switching	Yes
Bi-Direction Optics	Yes
Polarization Dependent Loss (PDL)	$<0.1 \mathrm{~dB}(\mathrm{C}+\mathrm{L}$ Bands)
Crosstalk	$<0.3 \mathrm{~dB}$ with optional OPM (C+L Band)
Wavelength Dependent Loss (WDL)	$<-50 \mathrm{~dB}$
Optional Optical Power Monitoring (OPM)	Dynamic range -25 dBm to +20 dBm
Optical Input Power Range	Accuracy $+/-1.0 \mathrm{dBm}$
Switch Lifetime	Dark to +24 dBm
Operating Temperature	$>10^{\circ} \mathrm{Cycles}$
Storage Temperature	$+5^{\circ} \mathrm{C}$ to $+40^{\circ} \mathrm{C}<85 \%$ RH non-condensing

Electrical and Mechanical	POLATIS 6000n Specifications
Fiber Type	Single-mode
Single Fiber Connector Types	LC or LC-HD Connectors Angled (APC) or Ultra (UPC) connector types available
Array Connector Types	MTP-8 or MTP-12 Elite Array Connectors

[^0][^1]
[^0]: All parameters are measured excluding connectors at 1550 nm and $20^{\circ} \mathrm{C}$ with an unpolarized source after thermal equalization unless otherwise noted.

 1. Single-sided $\mathrm{N} \times$ CC customer-configurable switches with any-to-any port connectivity are also available. Asymmetric $M \times N$ switches available on request.
 2. Measured using the 3 patch-cord method as defined in ANSI/TIA/EIA-526-7-1998
 3. Stability and repeatability are measured at maximum transmission
 4. The switch chassis width is $19^{\prime \prime}$ and the depth is $22^{\prime \prime}$ for all Series 6000 switches
 5. Series 6000 switches with optional optical power meters may have larger switch chassis height
[^1]: Copyright © 2022 HUBER+SUHNER Polatis. All rights reserved. All information in thisdocument is provided for informationa purposes only and is subject to change without notice. HUBER+SUHNER Polatis assumes no liability for actions taken based on information contained herein.

